Secure Introduction of One-way Functions

Dennis Volpano
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943, USA
Email: volpano@cs.nps.navy.mil

Abstract

Conditions are given under which a one-way function
can be used safely in a programming language. The secu-
rity proof involves showing that secrets cannot be leaked
easily by any program meeting the conditions unless break-
ing the one-way functionis easy. The result is applied to a
password system where passwords are stored in a publicfile
as images under a one-way function.*

1. Introduction

One-way functions play an important role in security.
Roughly speaking, a function f is one-way if for all w,
it is easy to compute f(w) but hard to find a z, given
f(w), such that f(2) = f(w). One-way functions come
in different flavors. Some are permutations, while others
are hash functions. They operate upon an arbitrary-length
pre-image message, producing what is called a message di-
gest. A message digest may have fixed length. Examples
of hash functions include, MD5, which produces a 128-bit
digest, and SHA1, which yields a 160-bit digest [3]. The
hardness property coupled with fixed-length digests make
certain one-way hash functions appealing for storing pass-
words on systems and creating pre-images of digital signa-
tures. The main result of this paper is independent of the
flavors of one-way functions.

A related property is claw-freeness[2]. A hash function
f is said to be claw-free if it is hard to find a pair (z,y),
wherexz # y, suchthat f(z) = f(y). For asmall message
space, a hash function may be one-way but fail to be claw-
free due to abirthday attack. The basic ideais that one can
significantly reducethe size of amessage space and still ex-
pect to find, with reasonable probability, two messages that
collide. Whether thisis anissue depends on the application.

1To appear at the 13th IEEE Computer Security Foundations Work-

shop, Cambridge, England, 3-5 July, 2000.

This paper is not concerned with the claw-free property.

In this paper, we are interested in identifying conditions
under which a one-way function can be used in a program-
ming language safely and with more flexibility than what
an information-flow property like Noninterference [7] al-
lows. For instance, a cryptographic API for a programming
language might include MD5. In this case, the conditions
should make leaking a secret using MD5 in any program as
hard as inverting MD5. This is a security property under
which we justify downgrading MD5 message digests.

We start with the definition of one-way functions from
[4]. A function f : ¥* — ¥* isone-way if

1. |w| = |f(w)| for al w (f islength preserving),
2. fiscomputablein polynomia time, and

3. for every probabilistic polynomial time Turing ma-
chine M, every k, and sufficiently large n, if we pick
arandom w of length n and run M oninput f(w),

PIM (f(w)) = y where f(y) = f(w)] <n~-.

The first and second conditions are irrelevant as far as our
main result is concerned. The probability in the third con-
ditionis taken over the random choices made by M and the
random choice of w. The third condition effectively merges
two propertiesthat we need to distinguish for the purpose of
constructing a security proof. One is simply the likelihood
that f avoids collisions with respect to a given input dis-
tribution. This property we term collision resistance. The
other is purely a property about inversion where the third
condition becomes Pr[M (f(w)) = w] < n~*. Thisisthe
one-wayness property of f.

If string w is considered private (high) then we might ar-
guethat f(w) could be considered public (low) based on the
one-wayness of f. However, it is actually unsound to do so
unless careistaken in what we allow as argumentsto f. For
instance, suppose f is aone-way function, variable h stores
ak-bit password, and mask isalow variable. Then consider

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 JUL 2000

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

Secur e Introduction of One-way Functions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA

93943, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
unclassified unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

9

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

[:=0;
mask := 2+F—1;
whilemask # 0 do
if f(h) = f(h|mask) then
1 :=1]|mask;
mask := mask > 1

Figure 1. An efficient leak of h

the code in Figure 1. It copies (leaks) h to low variable
intimelinear in k. (It might fail to copy every bit of h be-
cause of collisions but this may be unlikely depending on
the collision resistance of f.)

However, there are practical examples of where we need
to treat a message digest as low. Consider a challenge-
response protocol. A participant may respond publicly with
amessage digest computed over a shared secret and a pub-
lic chalenge it receives. We want the digest to be treated
as low. Another exampleis password checking. If h stores
a password then a simple password checker is given by the
assignment

b= (f(h) = f(r))

where b is a low output variable and r is the input to the
checker. We would expect » and h to be high variables.
After al, » may match h, and indeed usually will. However,
the result of comparing the message digests must be low.

So we want a set of conditions for a programming lan-
guage that prohibits abuses of one-way functions, asin Fig-
ure 1, yet recognizes legitimate downgrading by them in
other situations. This paper describes such a set of condi-
tions via a type system. Further, we need a sense in which
these conditions are sound. They are certainly not sound
with respect to Noninterference [7] due to downgrading.
However, they are sound in the following sense. It can be
proved that leaking the secret contents of avariable h using
any program P that meets the conditionsis as hard aslearn-
ing h with aprogramwhere accessto h is prohibited, but the
program can access f (h), cal f oninputs of its choice and
flip acoin. And deducing A in this context clearly amounts
to inverting f (h) using a probabilistic Turing machine. By
the one-wayness of f then, we expect P to succeed with
very low probability in polynomial time, for sufficiently-
long and uniformly-distributed values of h.

Informally, we reduce the problem of inverting a one-
way function to that of leaking a secret h via a well-typed
program. We begin with awell-typed program that can ac-
cess h directly and show that its low computation can be
simulated by a program with no references to high vari-
ables except in calls of the form f(h) and in comparisons
of the form f(h) = f(r), for a high read-only variable r.
The latter comparisons are then eliminated by an indepen-

dent random variable whose distribution is governed by the
collision resistance of f with respect to the well-typed pro-
gram’s input distribution. (It isirrelevant that we may not
know the distributi on because the reduction only relies upon
itsexistence.) Theresult isaprogram that uses f, f (h), and
an independent random variable to simulate the well-typed
program’s low computation with at least the same proba-
bility of success and with at most a constant increase in
time complexity. Therefore, any bound on the probability
of finding i from f (h) within polynomial time can apply to
the probability of leaking h with a well-typed polynomial-
time command. Thisis a security property that applies, for
instance, to the simple password checker above.

2. Thelanguage and semantics

A program is expressed in an imperative language:

(epr) e == x |h|n| fle) | f(h)=Ff(r) |
er + es | e; < e | €1 = es |
61&62 | €1>>€2 | (€1|62)
(emds) ¢ == skip | z:=e | c3¢2 |

if ethen ¢; elsec, | whileedoc

Metavariable x ranges over identifiers that are mapped by
memories to integers, n ranges over integer literals, f isa
function mapping integersto integers, and h and r are read-
only varigbles. There are three bitwise operators (&, >, |).
Integers are the only values; we use O for false and nonzero
for true.

A standard transition semantics for the languageis given
in Figure 2. It is completely deterministic and defines a
transition function — on configurations. A memory u is
a mapping from variables to integers. A configuration is
either apair (c, 1) or simply amemory p. Inthefirst case,
c is the command yet to be executed; in the second case,
the command has terminated, yielding final memory u. As
usual, we define s —° &, for any configuration «, and
k —k &, for k > 0, if there is a configuration ' such
that Kk —*~1 k' and k' — &'

Expressions are evaluated atomically and we extend the
application of p to expressions, writing u(e) to denote the
value of expression e in memory p. We say that u(f(e)) =
f(u(e)), u(er +e2) = pler) + u(e2), and so on. The other
expressions are handled similarly. Note that y(e) is defined
for dl e, aslong as every identifier in e isin dom(p).

2.1. Probabilistic execution

In our reduction of Section 4, we talk about the prob-
abilistic smulation of a command with respect to a joint
distribution d for its free variables (d is finite for a given
command if memories are mappings to k-bit integersfor a

(NO-0P)

(UPDATE)

(SEQUENCE)

(BRANCH)

(LooP)

(skip,) —

x € dom(p)
@ = e) — e = 1(e)]

(cr,p) — '
(01;027/“0 — (027/“LI)

(c1, 1) — (e1, 1)
(c1;¢2, 1) — (c1;¢2, 1)

p(e) #0

(if ethen ¢y elseco, u) — (c1,p)

p(e) =0
(if ethen ¢y elseca, u) — (c2,)

pu(e) =0
(whileedoc,u) —

p(e) #0

(whilee doc, u) — (¢;whilee doc, u)

Figure 2. Transition semantics

fixed k). A simulation may need to flip acoin but this occurs
only once, at the start of an execution, and therefore we can
achieve the effect by introducing an independent random
variable as input to the simulation. Although this keeps the
simulation deterministic, it still calls for attention in the se-
mantics because the input variable must be initialized from
aprobability space prior to execution, apart from other free
variables[1].

The free and random variables of a command can be
treated uniformly asjust free variablesif acommandisrep-
resented as a discrete Markov chain, the states of which are
configurations[5]. Theideaisto executeacommand simul-
taneoudly in all memoriesthat map exactly itsfreevariables.
For each such memory p, it begins execution in u with
probability d(u). An execution then becomes a sequence
of probability measures on configurations. The stochastic
matrix T' of the Markov chain in this case is trivial; each
row of the matrix is a point mass. That means there is no
splitting of mass after execution begins, only accumulation
of it (cf. pg. 337 of [1]). Each measure in a sequence is
determined by taking the linear transformation of the im-
mediately preceding measure with respect to T'. See[5] for
details.

For example, execution of y := -z isgivenin Figure 3
relative to a particular joint distribution for the four possi-
ble memories. We say that y := —x terminates in memory
[z := 0,y := 1] in one step with unconditional probability
5/8andin[z := 1,y := 0] in one step with probability 3/8.

As another example, consider the loop

whilez doz = -z

whose execution is given in Figure 4 for a particular distri-
bution. Mass accumulates at [z := 0] (or ({ }, [z := 0])
in the notation of [5]) in the final step. We say the com-
mand terminates in [z := 0] in three steps with uncondi-
tional probability 1.

In general, suppose p is a memory, ¢ has free vari-
ables z1,...,x, and pu1, ..., u, are memories with do-
main zq, ..., x, from which ¢ terminates in p in at most
k steps. If d isajoint distribution for x4, ..., z,, then we
say ¢ terminatesin u in k steps with unconditional proba-
bility d(pe1) + - - + d(pom)-

3. Thetype system

Following previous work, the types are as follows:

(data types) Tu=L | H
(phrasetypes) p == 7 | Tvar | 7cmd

Thedatatypes are just the security levelslow and high. The
rules of the type system are given in Figure 5. Here y isa
typing that maps variables (perhaps read only) to types of

the form 7 var or 7. If v(z) = 7 then we say that = isa
read-only variable in v. We distinguish / and r as specia
read-only variablesin that y(h) = H = ~(r), for all ~.

The typing rules for the other binary operators are simi-
lar to that for EQ. Notice that where downgrading is taking
place, specificaly in rules QUERY and IMAGE, it is done
with respect to read-only variables, namely » and h. Thisis
key to getting a reduction. It is these two rules that break
traditional Noninterference. Rule IMAGE comes in handy
when typing the code of a challenge-response protocol, in
particular, the C code that makes up the GNU implementa-
tion of CHAP. It alows a low digest to be computed over
a challenge and a secret, the concatenation of which is the
value of h. Rule QUERY is useful in password-checking
contexts. Moreis said about these applicationsin Section 5.

Notice that the code in Figure 1 is not well typed. Ex-
pression f(h | mask) can only be typed using rule HASH,
forcing it to have type H since y(h) = H for al ~. But
then the guard of the conditional has type H while its body
has type L cmd which cannot be reconciled.

4. Thereduction

The basic idea is to show that every well-typed com-
mand's low computation can be simulated, with at most a
constant increase in time complexity, by a command whose
only references to high variables are in calls to f. How-
ever, we are not finished. The simulation still has calls of
the form f (h) and f(r). Instances of f(h) can remain be-
cause they form the input to a command (the adversary) for
computing h, but al calls f (r) must be eliminated.

We begin with some definitions:

Definition 4.1 Memories 1 and v are eguivalent with re-
spect to a typing «y, written g ~., v, if u(h) = v(h) and
u(z) = v(z) for al z wherey(z) = L var or y(z) = L.

Definition 4.2 We say that ¢ isalow command with respect
to ~ if the only occurrences of high variablesin ¢ with re-
spect to -y arereferencesto b in f(h).

Definition 4.3 Given a joint distribution d on dom(~y), we
say that command ¢’ is a low probabilistic simulation of a
command c, relative to v and d, if ¢’ is a low command
with respect to v, and if ¢ terminatesin u in & steps with
unconditional probability ¢, relative to d, then there is a
memory v such that ¢’ terminatesin v in at most k + 1 steps
with probability ¢’, ¢' > gand v ~., p.

We will need the following lemma:

Lemma4.1l Suppose ¢ is a well-typed command with re-
spect to v and that it has no occurrence of f(h) = f(r).
Then thereis a low command ¢’ with respect to + such that

(y:i=—az,[z:=0,y:=0]) : 2

(y:=-a,[z:=0,y:=1])) :

(y :=—zx,[z:=1,y:=0]) :%

(y:=-az,z:=1y:=1]) :
!

[z:=0,y:=1]: 2+ ;=2

[2:=1y:=0]: §+1=2

Figure 3. Execution of y := -z as a sequence of measures

(whilez doz := -, [z := 0]) :
(whilez doz := -, [z :=1]) : 2
!
[z:=0] : %
(« := —a; whilez doz == -z, [z := 1]) : 2
!
[z:=0] : %
(whilez doz := -, [z := 0]) : 2
!

Figure 4. Execution of whilez do z := —x as a sequence of measures

(INT)
(IMAGE)
(QUERY)

(consT)

(R-VAL)

(EQ)

(HASH)

(sK1P)

(ASSIGN)

(COMPOSE)

(1F)

(WHILE)

(BASE)
(REFLEX)

(cmD™)

(SUBTYPE)

yEn: L
yEf(h): L
yEf(R) =f(r): L

V(@) =7
yhz:T

v(x) = T var
yhx:T

yhei:T, yFey: T
YhHe=es:T

yhe:T
yEfle):r

vk skip: H cmd

y(x)=Tvar, yke:r
vz :=e:7cmd

yhFe:remd, yF e emd
vy Fer;es T emd

yhe:T, yFep:remd, vk e emd

~vFifethene, elsecy : 7 cmd

yhe:r, vFc:7comd
v+ whileedoc: 7 cmd

LCH

pPCp

71 Cm

T Cn‘ﬂng cmd

YEpip, ;L Cpo
YyEDp:ps

Figure 5. Typing rules

for all u where dom(u) = dom(vy), whenever (¢, u) —"
u', thereisa p' and m such that (¢/, u) —™ u", p' ~4
p'" andm < n.

A proof of this lemma can be obtained by modifying the
proof of Theorem 5.1 in [6] in order to treat the slightly-
different notion of memory equivalence used here and to
handle f callsin expressions.

Finally, the reductionis given by the following theorem:

Theorem 4.2 If cis a well-typed command with respect to
v and d isajoint distribution on dom(~y), then ¢ has alow
probabilistic simulation relative to v and d.

Proof. Therearetwo cases, onewhere ¢ has no instances of
f(h) = f(r) and the other where it does. First suppose that
¢ has no occurrenceof f(h) = f(r). Thenlet ¢’ bethe low
command given by Lemma 4.1 for ¢. We can show that ¢’
isalow probabilistic ssimulation of ¢ asfollows.

Let d beajoint distribution on dom(+) and let

M = {p | dom(p) = dom()}.

Suppose ¢ terminatesin amemory p in k steps with uncon-
ditional probability ¢ relativeto d. Let pq,...,u, beal
memoriesin M for which (¢, u;) —7 p for some j where
j < k. Then

q=d(p) +d(pz) + -+ d(pn).

By Lemmad4.1, thereisa] and m; for each y; such that
(¢, i) —™ pl, pi ~, pandm; < j. Let v; be y; such
that dom(v;) contains exactly h and al low variables of ~.
Since ¢ is low, thereis a v such that (¢/,v;) —™ v},
vi ~. pf, and dom(v}) = dom(v;), fori = 1,...,n. By

transitivity of ~.,

! ! !
My ~y Mo~y ottt Ny gy

Therefore, v{ = vh = --- = v),. Soletv = v;. And
¢ terminatesin v in at most max(my, ..., m,,) steps with
unconditional probability at least ¢ if for any memory v/,
whose domain contains exactly i and all low variables of ~,
¢’ beginsexecutionin v’ with probability

> dw).
{neMimrv'}

Also, max(my, ..., my,) < k.
Now suppose ¢ hasan occurrenceof f(h) = f(r). With-
out loss of generality, assume ¢ has the form

if f(h) = f(r)then ¢, elsecy

where ¢; and ¢, havenoinstancesof f(h) = f(r). Thereis
no loss of generdlity here because f (h) = f(r) is constant

in any memory, given that 4 and r are read-only variables
in every typing, and c is well typed under . So let ¢| and
¢, bethe low commands given by Lemma4.1 for ¢, and c»
respectively. We can show that the command ¢’ given by

(if X then ¢, dsech); X := 0

where X is an independent boolean random variable not in
dom(~y), isalow probabilistic simulation of c.

Suppose, relative to d, that ¢; terminatesin p in fewer
than k steps with probability ¢, given that f(h) = f(r).
Since there is no free occurrence of r in ¢y, it aso termi-
nates in p in fewer than k steps with probability ¢; given
that f(h) # f(r). Therefore, ¢; is an unconditional prob-
ability that ¢; terminatesin p in fewer than & steps. Like-
wise, suppose ¢, terminatesin p in fewer than k steps with
probability ¢» given that f(h) # f(r). Since thereis no
free occurrence of 7 in ¢, it also terminatesin u in fewer
than & steps with probability ¢» giventhat f(h) = f(r). So
¢ is an unconditional probability that ¢, terminatesin . in
fewer than k steps. Therefore, ¢ terminatesin u in k steps
with probability

g=p-q+1-p) ¢
where p is defined by

> d(p).

{neM|f(u(h))=f(n(r))}

From above, there are memories v; and v}, each equiva-
lent to i, such that ¢} terminatesin v; in fewer than k steps
with probability ¢, ¢} terminatesin v, in fewer than k steps
with probability ¢4, g1 > ¢1 and ¢, > ¢». By thetransitivity
of ~,, v ~. vh whichimpliesv; = v} since neither has
initsdomain a high variable of v besides h.

Now if (c},»1) —7 v}, for some j and vy, then
(¢],m[X = n]) —J V|[X := n] because X does not
occur freein ¢}. Likewise for ¢}. Andif ¢’ terminates, it
does so in a memory that maps X to 0. Therefore, take
v = v{[X := 0], and we havethat v{[X := 0] ~., p since
vi[X :=0] ~, v; andv] ~., p.

Finally, the unconditional probability that ¢’ terminates
invina most k£ + 1 stepsis the probability that

if X then ¢} elsed,

terminatesin v; in at most & steps. And because X isinde-
pendent of dom(~y), this latter probability is given by

¢ =p-q+(1—p)g
if for any memory v, whose domain contains exactly 4 and

al low variables of +, ¢’ begins execution in v'[X := 1]
with probability

p-(> d(u))~
{neM|p~yv'}

Findly,¢' > ¢q. O

Supposey isatyping with alow variable! inits domain,
d isadistribution on dom(-y) and ¢ is acommand for copy-
ing h to [that is well-typed relative to v. Now suppose we
run ¢ simultaneously in all memories whose domains are
equal to dom(~y) for p(n) steps according to the input distri-
bution d, where p is apolynomial and n is the length of the
binary encoding of a memory. And suppose that after p(n)
steps, ¢ terminates in amemory p where p(l) = p(h) with
probability g. By Theorem 4.2, there is alow command ¢’
that terminatesin no more than p(n) + 1 stepsin a memory
v where v ~., p with probability at least g. Furthermore,
v(l) = v(h) sincev ~, u. And because ¢’ is low, it has
therefore managed to find A without any high variables as
input, just occurrences of f(h) isall. This brings us to the
following Corollary:

Corollary 4.3 Any bound on the probability of finding A
from f(h) within polynomial time, for a particular integer
size and distribution on h, also applies to the probability
of leaking h with a well-typed command in polynomial time
with respect to that size and distribution.

Noticethat probability p inthe preceding proof takesinto
account the probability that h = r aswell asthecollisionre-
sistanceof f. Indeed, we would expect our simple password
checker to be run with fairly high probability in a memory
where h = r if h stores a password and r is the checker's
input. The reduction says that any well-typed program that
attempts to exploit this fact has no advantage over a pro-
gram that cannot reference h or r, but instead can access
f(h), cdl f oninputs of its choice and flip acoin. The one-
wayness of f is treated by allowing instances of f (k) in a
low probabilistic simulation, which is a program squarely
within the realm of a probabilistic model of computation
used to define a one-way function [4].

5. Application to password systems

Consider again our simple password checker

where variable h stores a password, b is an output variable
and r is the input to the checker. Now we want to argue
that the checker is secure. We begin by asserting what we
know about the free variables. Well, since the output of the
checker is public, we expect b to be low. On the other hand,
h stores a password so it should be high. Under normal
use of the checker, r will likely store the contents of 4, and
since hishigh, we assert that r ishigh aswell. Furthermore,
the checker doesn’t attempt to update h or » and therefore
iswell typed under the assumption that these variables are

read only. So the checker is secure in the sense that it be-
longs to a class of programs for which the complexity of
leaking h rests upon the intractability of inverting f (h) for
sufficiently-long and uniformly-distributed values of A, by
the above Corollary. The checker’slow probabilistic sSimu-
lationis given by

(if X thenb:=1eseb:=0); X :=0

where X istherandom variablein the proof of Theorem4.2.

Now suppose passwords are stored in a read-protected
filein the clear asin, for example, a secrets file for CHAP
(Cryptographic Handshake A uthentication Protocol) widely
used by PPP. In this case, the checker becomesjust

We can argue that this checker too is secure using the re-
duction in Theorem 4.2 where we assume f is the identity
function. But this assumption requires that rule IMAGE be
eliminated, for clearly it is no longer sound. This means
the adversary can no longer access the “resource” f(h). In-
stead, we replace this form of accessto 4 with anew form,
namely match(h, e), which istruein u if u(h) = u(e). It
has the following typing rule:

yke:L
v F match(h,e) : L

Again, thereis downgrading taking place, asin rule IMAGE.
Whether match has any utility from the standpoint of writ-
ing useful programsis not important. What is important is
that we provide the adversary with the resources we would
realistically expect it to have. In the case of one-way func-
tions, the adversary expects f (h), but with f treated as the
identity function, it now becomesthe ability to match inputs
of the adversary’s choice against » which is precisely what
match provides.

If access to h is limited to match queries and the val-
ues of h are uniformly distributed k-bit integers, then the
probability of successfully leaking h with any deterministic
polynomial-time command containing an independent ran-
dom variable goesto zero as k increases [6]. If rule QUERY
isreplaced by therule

YyHh=r:L

then the second checker is well typed in the modified sys-
tem, and is therefore secure in the sense that it belongs to
a class of programs for which the complexity of leaking h
rests upon this asymptotic hardness result, by Theorem 4.2.

Finally, to say something about the password system as
awhole, we need to treat password updates aswell. A pass-
word updater for h isgivenin Figure 6. The updater expects
the old password, so freevariableold is asserted to be ahigh

if f(h)=f(old) then
check strength of new password
h := new;

else skip

Figure 6. A password update program for h

variable, asis new which storesthe new password. Thispro-
gramiswell typed in adifferent type system, namely that of
[7], assuming the strength-checking portion is well typed.
Therefore, it satisfies a Noninterference property which is
appropriate for this program, as there is no downgrading
taking place.

The results here can aso be applied to the GNU im-
plementation of CHAP. The C code that hashes randomly-
generated server challenges with a shared CHAP secret, us-
ing RSA’s MD5, is well typed. That tells us the code be-
longs to a class of programs for which leaking shared se-
cretsis as hard as inverting 16-byte MD5 message digests
computed over random challenges and sufficiently-long and
uniformly-distributed CHAP secrets. Itisrealy only inthis
sense that one can argue the code “ protects’ the confiden-
tiality of shared CHAP secrets.

One final word is needed about modeling adversaries.
We can identify two kinds of adversaries. inside and out-
side. Inside adversarieswrite programsthat we want to trust
and have direct access to secrets like h and r. Outside ad-
versaries write programs we never trust, and therefore are
denied direct access to secrets through some sort of access
control. Each adversary has a typing rule where downgrad-
ing occurs. For the outside adversary, it is rule IMAGE (or
therule for match if f isthe identity) and for the inside ad-
versary, it is rule QUERY. Both forms of adversary should
be represented in a computational model. One could argue
that the work in [6] does not treat inside adversaries com-
pletely because it does not consider arule like QUERY.

6. Conclusion

This paper presents syntactic conditions, via a type sys-
tem, for introducing one-way functionsinto a programming
language with more flexibility than what Noninterference
allows. These conditions are sound in a computational
sense and allow one to argue for the security of some sys-
tems where downgrading must occur.

Notice that functions are not part of the language we
considered. That means commands in the language cannot
call other commands. Functions pose a problem since \-
bound variables, although constant in a function body, can
be bound in different ways through different function ap-
plications. This capability breaks the reduction. A useful

line of work would be to identify conditions under which
functions could be introduced securely.

7. Acknowledgments

| would like to thank Geoffrey Smith for his comments
on the paper. This material is based upon activities sup-
ported by the National Science Foundation under Agree-
ment No. CCR-9900909.

References

[1] D. Kozen. Semantics of probabilistic programs. Journal of
Computer and System Sciences, 22:328-350, 1981.

[2] R. Rivest. Cryptography, volume A of Handbook of Theoret-
ical Computer Science, chapter 13. The MIT Press/Elsevier,
1990.

[3] B. Schneier. Applied Cryptography. John Wiley & Sons,
1996. Second Edition.

[4] M. Sipser. Introduction to the Theory of Computation. PWS
Publishing Company, 1997.

[5] D. Volpano and G. Smith. Probabilistic noninterference
in a concurrent language. Journal of Computer Security,
7(2,3):231-253, 1999.

[6] D. Volpano and G. Smith. Verifying secrets and relative
secrecy. In Proceedings 27th Symposium on Principles of
Programming Languages, pages 268-276, Boston, MA, Jan.
2000.

[7] D. Volpano, G. Smith, and C. Irvine. A sound type sys-
tem for secure flow analysis. Journal of Computer Security,
4(2,3):167-187, 1996.

